
ChallengesofPerformancePortability for
FortranUnstructuredMeshCodes

David Neill Asanza1, Abigail Hsu2
Mentors : Neil Carlson3, Zach Jibben3

1Grinnell College, 2Stonybrook University, 3Los Alamos National Laboratory

Introduction
This project investigates how different approaches to pa-
rallel optimization impact the performance portability of
unstructured mesh Fortran codes.
In addition, we explore the productivity challenges due to
the software tool limitations unique to Fortran.

As a case study, we op-
timized one of the key
computational kernels of
Truchas[1], a 3D multi-
physics application for si-
mulating metal casting
and processing.
Truchas has been in deve-
lopment for over 20 years,
is written in modern
Fortran, and uses un-
structured meshes for
modeling complex geome-
tries.

Figure 1. Induction Furnace 3D Model

Challenges
Kernel optimization is challenging due to available tools,
Fortran features, and unstructured meshes.

• Limited compiler support for Fortran 2008
• Limited compiler support for OpenMP GPU
• Lack of performance-portable libraries for Fortran
• No CUDA Fortran compiler compatible with Truchas,

forced to rewrite computational kernel in CUDA C
• Fortran array syntax requires expanding to do loops

for OpenMP optimization
• Indirect addressing for unstructured meshes causes

ineffective caching, in contrast to regular access pat-
terns of structured meshes

Figure 2.Non-Contiguous Memory Access for Unstructured Mesh[3]

Methodology
We modified and optimized the key kernel to investigate the performance portability of three paralleliza-
tion approaches. To determine portability, we ran on a variety of different node configurations. To measure
productivity, we recorded number of line changes.
Parallelization approaches:
• OpenMP CPU: Directive-based parallel runtime with a work-sharing model
• CUDA: GPU-specific language, only runs on Nvidia hardware
• OpenMP GPU: New directives available in OpenMP 4.0+ enable GPU computing

Hardware resources:
Label CPU model S:C:T* GPU model**

Haswell 2S Intel® Xeon® E5-2698 v3 @2.30 GHz 2:16:2 N/A
Haswell 4S Intel® Xeon® E7-8880 v3 @2.30 GHz 4:18:2 N/A
KNL Intel® Xeon Phi™ 7250 @1.40 GHz 1:68:4 N/A
Broadwell Intel® Xeon® E5-2695 v4 @2.10GHz 2:18:2 NVIDIA® TITAN V®

Power9 IBM® POWER9™ @3.80 GHz 2:20:4 NVIDIA® Tesla® V100 SXM2
*Sockets : Cores per socket : Threads per core
**Kernel only ran on one of the on-node GPUs

Performance and Productivity Analysis

Figure 3. OpenMP CPU performance across node
types (lower is better).
Kernel performance scales well initially as the number
of cores increases, but scales poorly with more than
one thread per core. Only KNL and Power9 gfortran
continue to speed-up with more than one thread per
core. With the most physical cores (72), Haswell 4S
is the best performing hardware.

Figure 4. Vector length impact on run time across
Intel® processors (lower is better).
For small vector sizes, Haswell 2S performs bet-
ter than KNL due to its higher clock speed. KNL
has more than twice as many vector units as Has-
well 2S [2], resulting in a lower run time for 256-bit
vectors. The performance for 512-bit vectors likely
decreased due to indirect addressing.

Figure 5. Performance relative to original serial
code run on Haswell 2S (higher is better).
Each approach speeds-up the kernel by at least a
factor of 4. OpenMP on the CPU performs best
due to powerful CPUs, namely Power9 and Haswell
4S. OpenMP on the GPU and CUDA perform
similarly on one GPU. Power9 xlf runs 4 times
faster than Power9 gfortran.

Figure 6. Both OpenMP approaches perform well
for less effort (upper-left is better).
OpenMP on the CPU provides the best perfor-
mance for the least effort. Adding CUDA enables
the use of the GPU, but requires rewriting the ker-
nel in C. OpenMP on the GPU performs similarly
to CUDA, enabling GPU computation for signifi-
cantly less effort.

Conclusion
• Compiler choice can dramatically impact performance on the same architecture.
• OpenMP on the CPU is the most productive approach, requiring the least programmer effort for at least

a factor of 4 speed-up. It is also the most portable due to widespread compiler and hardware support.
• OpenMP on the GPU is a viable optimization approach, requiring little programmer effort and providing
comparable performance to CUDA. This approach is currently limited to running on IBM hardware
(Power9) using the xlf compiler, but it may become more portable as compilers adopt the standard.

• CUDA is the least productive approach because it requires adding a Fortran-C interface and rewriting the
computational kernel in CUDA C. More optimization effort may yield increased performance. Portability
is limited because the CUDA API can only run on Nvidia hardware.

• Fully utilizing all available on-node GPUs could provide a significant performance improvement, especially
given the increasing adoption of GPUs in high-performance computing.

Acknowledgements
Many thanks to our mentors: Bob Robey, Hai Ah Nam, Kris
Garrett, Doug Jacobsen, Neil Carlson, and Zach Jibben.
Support provided by ASC Integrated Codes Telluride Project.
Support provided by U.S. Department of Energy at Los Ala-
mos National Laboratory supported by Contract No. DE-
AC52-06NA25396
Data collected on the Darwin cluster at Los Alamos Natio-
nal Laboratory, and the Cori cluster at the National Energy
Research Scientific Computing Center.

References
[1] Los Alamos National Lab. Truchas: 3D Multiphysics Si-

mulation of Metal Casting and Processing. GitLab, 2007-
2017. gitlab.com/truchas/truchas-release.

[2] "Cori Configuration." National Energy Research Scien-
tific Computing Center, nersc.gov/users/computational-
systems/cori/configuration. Accessed 23 July 2018.

[3] Stuebe, David. "Unstructured Grid Services." Ocean Ob-
servatories Initiative, confluence.oceanobservatories.org/
display/CIDev/Unstructured+Grid+Services. Accessed 23
July 2018.

Parallel Computing Summer Research Internship LA-UR-18-26965

